Blow-Up Solution in Logarithmic Sensitivity and Indirect Signal Generation Keller–Segel System
نویسندگان
چکیده
In this paper, we consider the following indirect signal generation and logarithmic sensitivity ε n t = Δ − χ ∇ · open="(" close=")" mathvariant="normal">ln c x ∈ mathvariant="normal">Ω , > 0 + w under homogeneous Neumann boundary conditions in a ball domain id="M2"> ⊂ R N ≥ 4 with smooth id="M3"> ∂ . This paper considers singular limit id="M4"> ⟶ ; result comes from finite time blow-up of arbitrary large values id="M5"> corresponding nonlocal scalar parabolic equation case when id="M6"> id="M7"> 2 /
منابع مشابه
Blow-up with logarithmic nonlinearities
We study the asymptotic behaviour of nonnegative solutions of the nonlinear diffusion equation in the half-line with a nonlinear boundary condition, ut = uxx − λ(u + 1) log(u + 1) (x, t) ∈ R+ × (0, T ), −ux(0, t) = (u + 1) log(u + 1)(0, t) t ∈ (0, T ), u(x, 0) = u0(x) x ∈ R+, with p, q, λ > 0. We describe in terms of p, q and λ when the solution is global in time and when it blows up in f...
متن کاملBLOW-UP AND NONGLOBAL SOLUTION FOR A FAMILY OF NONLINEAR HIGHER-ORDER EVOLUTION PROBLEM
In this paper we consider a kind of higher-order evolution equation as^{kt^{k} + ^{k&minus1}u/t^{k&minus1} +• • •+ut &minus{delta}u= f (u, {delta}u,x). For this equation, we investigate nonglobal solution, blow-up in finite time and instantaneous blow-up under some assumption on k, f and initial data. In this paper we employ the Test function method, the eneralized convexity method an...
متن کاملExistence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation
In this paper, we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation. Moreover, the finite-time blow-up of the solution for the equation is investigated by the concavity method.
متن کاملNumerical Solution of a Parabolic System with Blow-up of the Solution
Abstract. In this paper, the author proposes a numerical method to solve a parabolic system of two quasilinear equations of nonlinear heat conduction with sources. The solution of this system may blow up in finite time. It is proved that the numerical solution also may blow up in finite time and an estimate of this time is obtained. The convergence of the scheme is obtained for particular value...
متن کاملBlow-Up of Solutions for a System of Petrovsky Equations with an Indirect Linear Damping
In this paper, we consider a coupled system of Petrovsky equations in a bounded domain with clamped boundary conditions. Due to several physical considerations, a linear damping which is distributed everywhere in the domain under consideration appears only in the first equation whereas no damping term is applied to the second one (this is indirect damping). Many studies show that the solution o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2022
ISSN: ['1026-7077', '1563-5147', '1024-123X']
DOI: https://doi.org/10.1155/2022/8573835